
CreamingSoda
VERSION 2.0

Hello.	

Welcome to
CreamingSoda!

01.	 Installaition
 A.	 License Registration
 B.	 Command Line Installation

02.	 Creating a Repository

03.	 Committing Files

04.	 Envioronment / IDE Integration
 A.	 Qt Creator Setup
 B. Visual Studio Integration

AP.	 Command Line Parameters

Table of Contents

About the
Manual

Welcome to CreamingSoda. This
document is designed to get you up to
speed as quick as possible on how to use
the CreamingSoda Automatic Revision
Control System with your software or
document project.

CreamingSoda is a desktop Revision
Control Tool that runs on Microsoft
Windows, Apple Mac OS X and various
Linux distributions.

To begin using CreamingSoda, you‘ll
need to install it to your computer and
either use a valid license key or have an
active trial.

Thanks for choosing
CreamingSoda!

3

01. Installation
Download the latest version of CreamingSoda from the download
page and follow the instructions listed for your platform. The trial
installer can be used by Standard and Professional edition licensees
too.

A. License Registration
Once installed, you will be presented with the Licensing Page. If you
wish to run CreamingSoda as a 14 Day trial, simply click the Begin
Trial button, otherwise enter your license key into the text box and
click Activate License

4

B. Command Line Installation
If you have opted to install the command-line only version of CreamingSoda, you will not be able
to begin a trial license from the command line. If you require a command-line only installation on a
trial basis, please contact us for an evaluation code.

To register a command line version simply use the -register command line switch followed by a
space and your license key.

You will need to run the command with administrative privileges.

Starting a command prompt with administration privileges:
Windows 7 & Below:

1. Click the Start Orb
and in the search
field type cmd

2. Right click the
cmd.exe program

3. Select Run as
Administrator from
the popup menu

Windows 8:
1. Open the Start Screen

2. Type cmd to begin an application search

3. Right click the Command Prompt tile and
click Run as Administrator

5

Creating
Repositories

02.

The New Project screen allows you

to create the parameters required

to add a new repository to your

CreamingSoda installation.

Repositories you add will only be

added to your repository list, other

users on your computer will be able to

import them into their user account

if they are stored in a folder that is

accessible by all users.

6

Repository Title
The name of the repository.
This will be used when accessing the
repository from the command line, so
it‘s advisable to keep it relatively short.

Source Directory
The location of your source files.

Anything in this folder will be processed
when CreamingSoda is working -
the files can be anything you desire
(software code, text files, documents,
graphics or even binary data).

To keep performance snappy, we
recommend keeping recursive
directories to a minimum and minimize
the amount of large files to be
processed.

Storage Location
This specifies where CreamingSoda
should store the builds and revision files
for your project.

By default the storage location is in
a sub-file in your home directory. If
multiple users are likely to be working
on the project, a mapped network drive
can be used.

Professional Edition licensees are able
to specify FTP or SQL server parameters
to make sharing repositories across
enterprise deployments easier.

Create Storage Archive
Professional Edition Only

If enabled, CreamingSoda will create a
single standalone file to form the basis
of the repository storage. Revisions
and Builds will be added to this file
over time. Standalone files can be
compressed or encrypted if desired.

Automatic Scan
Determines whether CreamingSoda
should add the project to the list of
repositories it automatically scans.

If the project is included in automatic
revision scanning, any changes to the
directory will be automatically copied to
the repository.

This should be disabled for large
projects, or projects where builds and
revisions will be performed manually.

Version Tags
CreamingSoda can automatically
update the build and revision number in
your project, handy for software builds.

When enabled, every time a commit is
performed, CreamingSoda will check
for a special version tag (usually in a
commented line for software projects)
and update the following line with the
current Build and Revision numbers.

This is great for software developers
since it means you can easily track down
any issues your customers may be facing
by looking back at that specific build
number.

7

03.

Committing
Files

8

When committing files, you‘ll be able to select whether or not to add files to the

repository as a build or a revision, enter some notes and select which files to

include and which files to ignore.

The difference between Builds and Revisions are: Builds are a snapshot of the

entire project source folder at that time, and should you ever need to at any

point, checking out a build will give you a fully working copy of your source files.

Revisions only include the files which have been changed on the file system and

If no files have been changed a revision will fail. File changes are detected in a

number of ways, usually by checking the file contents or last modified times.

CreamingSoda will include all files by default and requires implicit instructions

on which files to exclude. Once excluded, a file will not be included again unless

you have instructed CreamingSoda to do so.

9

04. Environment
Integration.
Integrating CreamingSoda into any environment is a

relatively seamless process and one that is certainly easy to

master.

For document editing, such as Word Processing, Presentations or Spreadsheets,
simply setting up a repository that uses your documents directory as the file
source should suffice. Every time you click the save button in your application,
CreamingSoda will make a revision automatically. It doesn‘t even need to be
confined to office documents either - anything from CAD files to musical masters
can be automatically scanned.

For software developers, CreamingSoda can integrate into your build
environment. Not only will your source files be revised every time you save, but a full
snapshot of your source directory can be committed every time you click the build
button. Ever need to go back to the source code of a specific build after a customer
has encountered an error? Now it‘s as easy as clicking the view files button!

Build environment integration is handled by the command line utility provided with
your CreamingSoda installation - great, because it means it‘s easy to integrate it into
nearly any build system.

While the ability to commit builds and revisions is included, advanced users can
even create new repositories from the command line for tighter integration into your
build system. A full list of command line switches is available here.

After setting up your repository, committing a build via the command line looks
something like:

cscmd.exe commit -repo “repositoryname” -type build

Where repositoryname can be replaced
with the name of the repository as it
appears in your CreamingSoda repository
list, or the full path to the repository
descriptor file.

Optionally, you can also pass the -notes
parameter which lets you override the
build notes. If you‘d prefer to commit the
files as a revision, replace -type build,
with -type revision.

If you are a Professional Edition user and
have opted for an encrypted archive file,
you may pass -encrypt encryptionkey
to decrypt your archive file to commit the
build or revision.

Note If your file is not encrypted already, passing

-encrypt will encrypt your repository. Passing an

incorrect encryption key will cause the commit to

fail.

10

A. Qt Creator Setup
Qt Creator provides a uniform platform for building Qt

based applications across a multitude of platforms. Using

CreamingSoda with Qt Creator is easy and once you‘ve set a

couple things up, everything is automatic.

1. Create your application project in
Qt Creator

2. Create a repository in
CreamingSoda and use the project
source directory from Qt Creator in
the New Repository wizard.

3. Back in Qt Creator, click the
projects button down the left-hand
side.

4. In the Build Steps section, click
‘Add Build Step’

5. Select ‘Custom Build Step’ from
the menu.

6. In the ‘Custom Build Step’
area, locate ‘cscmd.exe’ from
your CreamingSoda installation
directory. Under arguments enter:

(where ‘project’ is the name of your CreamingSoda
repository, or the full / relative path to the
repository descriptor file)

commit -repo ‘project’ -type build 7. You can optionally move the build step up or down the
chain depending on your needs. We tend to leave it as the last
step, so only successful compilations trigger a CreamingSoda
commit.

11

B. Visual Studio Integration

1. Create and save your Visual Studio
Project

2. Create a repository in
CreamingSoda and use the project
source directory from Qt Creator in
the New Repository wizard

3. In the Visual Studio ‘Solution
Explorer’ right click the project

4. Select ‘Properties’ from the menu

5. In the ‘Command Line’ text field,
enter the path to your CreamingSoda
installation path and cscmd.exe (in
double quotes if necessary), followed
by:

(In this case ‘Direct2DApp1’ is our project name

in both Visual Studio and CreamingSoda)

6. Optionally, change the
‘Description’ field to ‘Performing
CreamingSoda Build Step’ or similar
to help distinguish the event in the
Build logs.

Microsoft Corporation‘s Visual Studio is the premier

development studio for the Microsoft Windows platform.

Customers who wish to use CreamingSoda with Visual Studio

are in luck - it couldn‘t be any easier!

commit -repo ‘Direct2DApp1’ -type build

12

13

APPENDIX.
Command Line

Parameters

CreamingSoda
By Conspire Web Services

Usage:
 cscmd [action] [options]

 OPTIONS:
 create
 -name [projectname]
 REQUIRED
 Specifies the name of the project.

 -source [srcpath]
 REQUIRED
 Specifies the location of the source files.

 -store [storedir]
 Optional (Default %HOMEDIR%/CreamingSoda/%PROJECTNAME%)
 Specifies where to store the repository.
 Local/Network folders are supported as paths.
 (PRO) FTP Servers are supported as ftp://username@server/.
 (PRO) SQL Servers can be used with:
 {driver}://{username}@{server}/{dbname}
 You will be prompted for a password if required.
 Example: mysql://dbuser@localhost/repositorydb

 -autoscan [ON/OFF]
 Optional (Default ON)
 When ON, Automatic revisions will be enabled.

 -versioncheck [ON/OFF]
 Optional (Default ON)
 Determines if source files will be scanned for version tags.

 -archive [ON/OFF]
 Optional (Default OFF)
 If ON, the repository will be stored in a standalone archive.
 This feature is only availble in the Professional Edition.

 -compress [ON/OFF]
 Optional (Default OFF)
 When ON, stored file revisions stored will be compressed.
 This option is only valid when creating storage archives.

 -encrypt [CRYPTKEY]
 Optional.
 When set, stored file revisions stored will be encrypted.
 This option is only valid when creating storage archives.
 This feature is only availble in the Professional Edition.

	 info
 -repo [reponame]
 REQUIRED.
 The repository to print information on.
 Can be the repository name, or the storage directory.

APPENDIX.
Command Line

Parameters

 commit
 -repo [reponame]
 REQUIRED.
 The repository to work with.
 Can be the repository name, or the storage path.
 Local/Network folders are supported as paths.
 (PRO) FTP Servers are supported as ftp://username@server/.
 (PRO) SQL Servers can be used with: sql://username@server/.

 -type [revision/build]
 REQUIRED.
 Sets whether or not this commit is a revision, or build.
 Revisions only work with modified files from the source.
 Builds take a complete snapshot of the source.

 -notes [notes]
 Optional (Defaults to timestamp)
 The notes to be displayed with the commit.
 Must be encased in ‘ or “ Quotes.

 -force
 Optional.
 If passed, revisions will be submitted, even if no
 source files were modified. Ignored for build commits.

 -ignore [FILENAME]
 Optional.
 Any filenames listed will not be included in the revision.
 Ignoring files once will ignore them for all future commits.
 Wildcards will be matched.
 Multiple ignore arguments are allowed.

 -include [FILENAME]
 Optional.
 Includes a previously ignored file.
 Including a file once will remove any ignore statements.
 Wildcards will be matched.
 Multiple include arguments are allowed.

 -encrypt [CRYPTKEY]
 Optional.
 When set, stored file revisions stored will be encrypted.
 Use when the repository has encryption enabled.
 [CRYPTKEY] must match previously set encryption key.
 This feature is only availble in the Professional Edition.

 -quick
 Optional.
 If passed, the file scanner will skip checking file contents.
 This is quicker, but less accurate.
 No parameters are required.
 This switch is ignored when using archival storage.
 Repository setting: Automatic Version Checking is ignored when
 using this switch.

15

 checkout
 -repo [reponame]
 REQUIRED.
 The repository to work with.
 Can be the repository name, or the storage directory.

 -path [checkoutpath]
 REQUIRED.
 The location to checkout to.

 -build [buildid]
 Optional (Defaults to the latest build + revisions)
 If passed, revisions newer than the build will be submitted,
 even if no source files were modified.

 -ignore [FILENAME]
 Optional.
 Any filenames listed will not be included in the revision.
 Ignoring files once will ignore them for all future commits.
 Wildcards will be matched.
 Multiple ignore arguments are allowed.

 -include [FILENAME]
 Optional.
 Includes a previously ignored file.
 Including a file once will remove any ignore statements.
 Wildcards will be matched.
 Multiple include arguments are allowed.

 -decrypt [CRYPTKEY]
 Optional.
 When set, file revisions will be decrypted.
 This feature is only availble in the Professional Edition.

16

17

Copyright 2012-13
Conspire Web Services
A Blade-Conspire International Group Brand.

